

GOLDEN TUITION ACADEMY

Want more papers?

Visit https://gta.sg/resources

Want guided help from expert tutors?

Book a class now: https://gta.sg

HWA CHONG INSTITUTION JC2 Preliminary Examination 2024

CANDIDATE NAME		CLASS 2 3
CENTRE NUMBER	S	INDEX NUMBER
MATHEMA Higher 2	FICS	9758/01
		23 August 2024

Number of Sheets of Additional Writing Paper Submitted:

Candidates answer on the Question Paper. Additional materials: List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Do not write anything on the List of Formulae (MF26).

Write in dark blue or black pen. You may use HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all the questions. Write your answers in the spaces provided in the Question Paper.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part of question.

	For Examiner's Use								
Question No.	Marks Obtained	Total Marks	Remarks						
1		4							
2		5							
3		5							
4		7							
5		7							
6		11							
7		9							
8		12							
9		14							
10		14							
11		12							
TOTAL		100							

This document consists of **28** printed pages and **3** blank pages

Remarks	
a)	INSTR: Follow instructions as stated in Question (e.g. correct s.f , exact values, coordinates, similar form etc.)
b)	NOT: Correct Mathematical Notations
c)	ACC: Accuracy of Answers (e.g. affected by early rounding off, not writing +C for indefinite integrals etc.)

3 hours

1 The curve y = f(x) cuts the axes at $\left(0, \frac{1-p}{p}\right)$ and (1-p, 0), where p is a constant such that $0 . It is given that <math>f^{-1}$ exists.

State, if it is possible to do so, the coordinates of the points where the following curves cut the axes.

- (a) y = f(x) + 1
- **(b)** y = f(x-p)
- (c) y = f(3x p)(d) $y = f^{-1}(x)$ [4]
- (a) It is given that f(x) and g(x) are non-zero polynomials.
 When solving the inequality f(x)/g(x) ≥ 1, a student writes f(x) ≥ g(x).
 Comment on the student's working. [1]
 - (**b**) Find the exact set of values of x for which $\frac{2x^2 x 9}{x^2 x 6} \ge 1$. [4]
- 3 The region bounded by the curve with equation $x = \frac{y}{\sqrt{2y y^2}}$, the lines y = 1, y = 1.6and the y-axis is rotated through 2π radians about the y-axis to form a solid ornament.
 - (a) Find the exact volume V_1 of the ornament, giving your answer in terms of π . [4]
 - (b) An ornament designer designs a different ornament by rotating the region bounded by another curve with equation $x = \frac{by}{\sqrt{2y - y^2}}$, where b > 0, the lines y = 1, y = 1.6 and the y-axis. The region is rotated through 2π radians about the y-axis. The volume generated is now V_2 . State the ratio of V_1 to V_2 . [1]

4

(a) The 11th, 15th and 23rd terms of an arithmetic progression are three distinct consecutive terms of a geometric progression. Find the common ratio of the geometric progression. [4]

(b) The sum, S_n , of the first *n* terms of a sequence, v_1, v_2, v_3, \dots is given by

$$S_n = \frac{3^{n+2} - \left(-2\right)^{n+2} - 5}{6}$$

Find an expression for v_n in terms of n, simplifying your answer.

5 (a) By using the substitution $x = \sec \theta$, where $0 < \theta < \frac{\pi}{2}$, show that $\int_{\sqrt{2}}^{2} \frac{1}{\sqrt{x^{2} - 1}} dx = \int_{\theta_{1}}^{\theta_{2}} g(\theta) d\theta,$

where θ_1 and θ_2 are exact constants to be stated, and g is a single trigonometric function to be determined. [4]

(**b**) Hence find the exact value of
$$\int_{\sqrt{2}}^{2} \frac{1}{\sqrt{x^2 - 1}} dx$$
. [3]

DO NOT WRITE IN THIS MARGIN

[3]

6 The functions f and g are defined by

f:
$$x \mapsto \ln\left[\left(x+4\right)^2 - 9\right]$$
, for $x \in \mathbb{R}$, $x > k$,
g: $x \mapsto \frac{3-2x}{1+2x}$, for $x \in \mathbb{R}$, $x \ge \frac{1}{2}$.

(a) Find the least value of k for which the function f^{-1} exist. [2] Use the value of k found in part (a) for the rest of this question.

(b) Without finding f^{-1} , find the exact value of α if $g\left(\frac{3}{2}\right) = f^{-1}(\alpha)$. [2]

The function h is defined by

$$h: x \mapsto \frac{1}{\sqrt[4]{x(a-x)}}$$
, for $0 < x < a$,

where a is a constant.

(c) Sketch the graph of y = h(x), stating the coordinates of the stationary point and the equations of any asymptotes. [3]

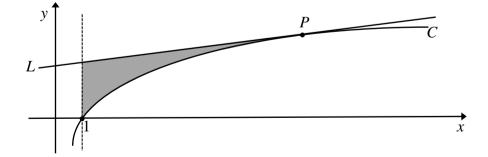
(d) Given that the composite function gh exists, find the range of values of a. [2]

(e) By considering $y = \frac{1}{h(x)}$ and its stationary point, or otherwise, find the value of *a* for which $[h(x)]^2 = 1$ has only one real root. [2]

4

DO NOT WRITE IN THIS MARGIN

- 7 It is given that $f(x) = ax^5 + bx^3 + cx$, where a, b, and c are non-zero real constants.
 - (a) Show that f(-x) = -f(x). [1]
 - (b) It is given that f(x) = 0 has only one real root and one of the non-real roots is p+qi, where p and q are non-zero real constants. Find, in terms of p and q, all the other non-real roots of f(x) = 0, justifying your answers. [3]
 - (c) Given that $\int_0^3 f(x) dx = -5$, state the values of $\int_{-3}^3 f(x) dx$ and $\int_{-3}^3 f(|x|) dx$. [2]

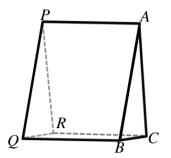

Let a = 1 and b = 3.

- (d) By considering f'(x), find the range of values of *c* such that the curve with equation y = f(x) has 2 stationary points, showing your working clearly. [3]
- 8 A curve *C* has parametric equations

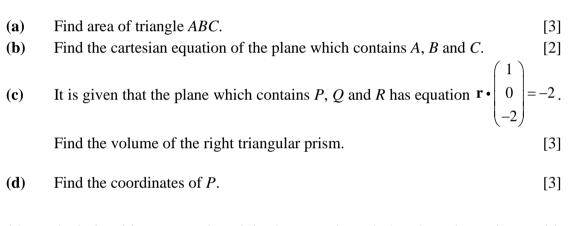
$$x = t^2$$
, $y = \ln t$, for $t > 0$.

- (a) Find the equation of the tangent to C at the point with parameter t. [3]
- (b) The line *L* is the tangent to *C* at the point $P(p^2, \ln p)$, where *p* is a positive constant. Given that *L* passes through the point $\left(1, \frac{p^2 + 1}{2p^2}\right)$, show that p = e.
- (c) Find $\int \ln x \, dx$. [2]

The diagram shows the parts of *C* and *L* for which x > 0.



(d) Find the cartesian equation of C in the form y = f(x). By using the results in parts (b) and (c), find the exact area of the shaded region bounded by C, L and the line x = 1. [4]


DO NOT WRITE IN THIS MARGIN

[3]

9 A right triangular prism has its 2 triangular faces *ABC* and *PQR* adjoined by 3 rectangles as shown in the diagram below.

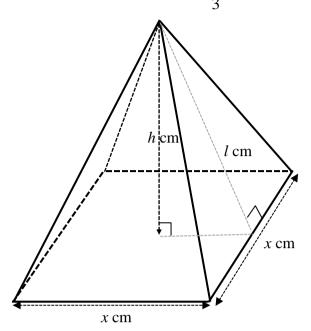
The coordinates of the points A, B and C are (-5, -4, 1), (-3, 6, 2) and (-3, -4, 2) respectively.

(e) A circle with centre at the origin *O* passes through *A* and another point *D* with coordinates (1, 5, -4). Find the length of the minor arc *AD*, giving your answer correct to 3 decimal places. [3]

[Arc length = $r\theta$ where θ is in radians.]

DO NOT WRITE IN THIS MARGIN

- 10 In a particular chemical reaction, every 2 grams of compound Y and every 3 grams of compound Z react to form 1 gram of compound X. Let *x*, *y* and *z* denote the masses (in grams) of compounds X, Y and Z respectively present at any time *t* (in minutes) after the start of the reaction. 24 grams of compound Y and 24 grams of compound Z are used at the start of the reaction, and there is none of compound X present initially.
 - (a) Express y as $\alpha + \beta x$, where α and β are constants to be determined. [1]
 - (b) At any time t, the rate of change of x with respect to t is directly proportional to the product of y and z. Show that


$$\frac{\mathrm{d}x}{\mathrm{d}t} = k(x-12)(x-8),$$

where *k* is a positive constant.

- (c) By solving the differential equation in part (b), obtain an expression for x in terms of t and k. [6]
- (d) State the theoretical mass of compound X formed in the long run. [1]
- (e) It is observed that there are 4 grams of compound X formed 5 minutes after the start of the reaction. Determine the exact value of k. [2]
- (f) Sketch the graph of x against t with the value of k found in part (e). [2]

[2]

11 [The volume of a right square-based pyramid is $\frac{1}{3}$ × base area × height.]

Jane designs a model in the shape of a right square-based pyramid. The square base has sides x cm. Each of the four lateral faces is a triangle with base x cm and perpendicular height l cm. The four lateral faces converge at the top of the pyramid to form an apex directly above the center of the square base. The vertical height of the pyramid is h cm. The model is assumed to be made of material of negligible thickness.

(a) Form an equation involving x, l and h.

In the design of the model, Jane hopes to fix the total surface area, $A \text{ cm}^2$ of the model but maximise the volume, $V \text{ cm}^3$ of the model.

(b) Using the result in part (a), show that

$$A = x^2 + 2x\sqrt{h^2 + \frac{x^2}{4}}.$$
 [1]

(c) Hence show that

$$V^{2} = \frac{Ax^{2}(A - 2x^{2})}{36}.$$
 [2]

(d) Use differentiation to show that the maximum V occurs when $x = \frac{\sqrt{A}}{2}$ and find a simplified expression for the maximum V in terms of A. (You need not show that your answer gives a maximum.) [5]

(e) Given that V is a maximum, find the angle made by a lateral face and the base of the model, giving your answer to the nearest degree. [3]

[1]

8

HWA CHONG INSTITUTION JC2 Preliminary Examination 2024

MATHEMA	ΓICS						97	′ 58	3/0	2
CENTRE NUMBER	S				INDEX NUMBE	R				
CANDIDATE NAME					CLASS	2	3			

Higher 2

12 September 2024 3 hours

Number of Sheets of Additional Writing Paper Submitted: Candidates answer on the Question Paper. Additional materials: List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Do not write anything on the List of Formulae (MF26).

Write in dark blue or black pen. You may use HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer **all** the questions. Write your answers in the spaces provided in the Question Paper.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part of question.

	For Examiner's Use							
Question No.	Marks Obtained	Total Marks	Remarks					
1		6						
2		5						
3		7						
4		5						
5		7						
6		10						
7		6						
8		7						
9		9						
10		12						
11		12						
12		14						
TOTAL		100						

This document consists of **31** printed pages and **3** blank pages

Remarks		
a)	INSTR : Follow instructions as stated in Question (e.g. correct s.f, exact values, coordinates, similar form etc.)	
b)	NOT: Correct Mathematical Notations	
c)	ACC: Accuracy of Answers (e.g. affected by early rounding off, not writing +C for indefinite integrals etc.)	
i	Turn Ove	r

Section A: Pure Mathematics [40 marks]

1 (a) By considering $\tan(A-B)$, show that

$$\tan^{-1}\left(\frac{1}{x}\right) - \tan^{-1}\left(\frac{1}{1+x}\right) = \tan^{-1}\left(\frac{1}{x^2 + x + 1}\right).$$
 [3]

(b) Hence show that

$$\sum_{r=1}^{n} \tan^{-1} \left(\frac{1}{r^2 + r + 1} \right) = k - f(n),$$

where f(n) is an inverse trigonometric function and k is an exact constant to be found. [3]

2 A sequence is defined by the recurrence relation

$$u_{n+1} = \frac{1+u_n}{1-u_n},$$

for $n \ge 1$.

(a) State what happens to the sequence when $u_1 = 0$. [1]

It is now given that $u_1 = 2$.

(b) Find u_2 , u_3 , u_4 , u_5 and u_6 . [2]

(c) By observing the pattern in part (b), find
$$\sum_{r=1}^{4n} u_r$$
 in terms of *n*. [2]

5

- 3 (a) A curve C has equation $2y^3 y^2 = xe^x$. Find the equations of the tangents which are parallel to the y-axis. [5]
 - (b) It is given that the tangents found in part (a) make an acute angle of $\frac{\pi}{6}$ radians with the line y = mx + 1. Find the values of m. [2]
- 4 (a) For any non-parallel and non-zero vectors **m** and **n**, explain clearly and show that

$$\left(\mathbf{m} \cdot \mathbf{n}\right)^{2} + \left|\mathbf{m} \times \mathbf{n}\right|^{2} = \left|\mathbf{m}\right|^{2} \left|\mathbf{n}\right|^{2}.$$
 [2]

P and *Q* are two distinct points, where $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$. It is also known that \mathbf{p} and \mathbf{q} are non-zero vectors.

Two non-parallel lines l_1 and l_2 have vector equations

 $\mathbf{r} = \mathbf{p} + s\mathbf{u}$, $s \in \mathbb{R}$ and $\mathbf{r} = \mathbf{q} + t\mathbf{v}$, $t \in \mathbb{R}$ respectively.

- (b) If $\mathbf{v} \times (\mathbf{p} \mathbf{q}) = \mathbf{0}$, what can be said about the relationship between the two lines? Justify your answer. [3]
- (a) Using standard series from the List of Formulae (MF26), find the Maclaurin expansion of $\frac{1}{(1+\cos x)^2}$ in ascending powers of x up to and including the term in x^4 . [4]
 - (b) Find the set of values of x for which $\frac{1}{(1+\cos x)^2}$ is within ± 0.5 of the polynomial found in part (a), where $0 \le x < \pi$. [3]

6 (a) Given that u = x + iy, where x and y are real numbers, show that $|u|^2 = uu^*$. [1]

Two complex numbers z and w with non-zero real and imaginary parts satisfy

$$|z+w| = |z-w|$$
, where $z \neq w$.

(b) By considering part (a), show that
$$zw^* + z^*w = 0.$$
 [3]

(c) Hence show that zw^* is purely imaginary. [2]

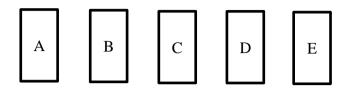
It is now given that $w = -1 + i\sqrt{3}$, and the argument of z is θ , where $-\pi < \theta \le \pi$.

(d) Using the result in part (c), find the possible exact values of θ . [4]

Section B: Probability and Statistics [60 marks]

7 A factory produces a large number of monitor screens. It is known that, on average, 100p% of the monitor screens are faulty. The number of faulty monitor screens produced each day is independent of that on other days. Each day, the quality control manager will perform a check on *n* randomly chosen monitor screens produced on that day.

Let M be the number of faulty monitor screens found. You may assume that M can be modelled by a binomial distribution.


(a) State the probability that on a particular day, there are at least 2 but no more than 3 faulty monitor screens found, giving your answer in terms of n and p.

[2]

(b) Each day, the quality control manager will perform a check on 10 randomly chosen monitor screens produced. Find the possible values of *p* such that there is a 25% chance that on a randomly chosen week with 5 working days, there are exactly three days when there are at least 2 but no more than 3 faulty monitor screens found. [4]

4

8 A conference hall has 5 doors, labelled A, B, C, D and E, which are located side by side as shown below. The doors are to be painted using 4 distinct colours, and each door will be painted with a single colour.

- (a) By considering the number of colours available for each door, find the number of ways to paint the 5 doors such that there is no restriction to the colour of each door.
- (b) Find the number of ways to paint the doors such that there are no consecutive doors which are of the same colour. [3]
- (c) Find the number of ways to paint the doors if all 4 colours are to be used. [3]

9 In this question, you should state the parameters of any distribution you use.

A ceramic shop sells handmade ceramic cups. The mouths of the cups are assumed to be circular in shape. The diameters of the outer circumferences of the top rim of the cups, S, are assumed to follow a normal distribution with mean μ mm and standard deviation σ mm.

- (a) It is given that P(S < 80.5) = P(S > 84.5) and that the probability of the diameter of the outer circumference of the top rim of a randomly chosen cup being more than 85 mm is 1.15%. Find the value of μ , and show that $\sigma = 1.10$, when corrected to 3 significant figures. [3]
- (b) The shop also makes covers of circular shape that can be fitted over the mouths of the cups. The diameter of any randomly chosen cover, *C*, in mm, follows a normal distribution with mean 83 mm and standard deviation 1.5 mm. A cover would be considered to be well-fitted over the mouth of a cup if the diameter of the cover is larger than that of the outer circumference of the top rim of the cup by not more than 2 mm. Find the probability that a randomly chosen cover is well-fitted over the mouth of a randomly chosen cup. [3]
- (c) A cover and a cup are randomly chosen. If the cover is well-fitted over the mouth of the cup, find the probability that the diameter of the cover is larger than that of the cup by more than 1.5 mm. [3]

10 An online website, Star-Salary, which shares information on the salaries for fresh graduates in Singapore, claimed that the mean monthly salary of a fresh graduate with a Bachelor of Science (B.Sc) degree was \$3600.

However, another website, First-Pay, stated a higher mean monthly salary for a fresh graduate with the same degree. A random sample of 80 fresh graduates with a B.Sc degree is surveyed and their monthly salaries, x, are summarized by

$$\sum (x-3600) = 1000$$
, $\sum (x-3600)^2 = 205000$.

- (a) Give a reason why it is challenging to obtain a random sample in this context. [1]
- (b) Calculate exact unbiased estimates of the population mean and variance for the monthly salaries of fresh graduates with a B.Sc degree. [2]
- (c) Test, at the 5% level of significance, whether First-Pay's claim is justified. You should state your hypotheses and define any parameters that you use. [4]
- (d) Explain, with justification, whether any assumption about the population is needed for the test in part (c) to be valid. [1]
- (e) State, in the context of the question, the meaning of "5% level of significance". [1]

A second sample of 60 randomly chosen fresh graduates with B.Sc degree is surveyed and the sample mean and standard deviation of their monthly salaries are found to be $\$\overline{y}$ and \$355 respectively.

(f) Find the largest value of \overline{y} such that this second sample would conclude the test in favour of Star-Salary's claim at 5% level of significance, giving your answer correct to the nearest dollar. [3] 11 An experiment was carried out to investigate the growth rate of a particular species of plant. The following table gives the height of the plant specimen, h centimeters, at the start of the n^{th} month.

n	1	2	4	6	8	10
h	6.22	9.06	13.62	16.62	18.46	19.72

A possible model for the growth rate is given to be

$$h = \frac{an}{b+n},$$

where a and b are constants.

- (a) By writing the above equation in a form that is linear in $\frac{1}{h}$ and $\frac{1}{n}$, calculate the equation of the least squares regression line of $\frac{1}{h}$ on $\frac{1}{n}$. Hence find estimates for the values of a and b, correct to 3 decimal places. [4]
- (b) Sketch a scatter diagram for $\frac{1}{h}$ against $\frac{1}{n}$ and include the least squares regression line found in part (a). [2]
- (c) Explain in the context of the question, the significance of the value of a. [1]
- (d) Use the least squares regression line in part (a) to find the least integer value of *n* required for the plant to reach a height of 18 centimeters. Explain whether you would expect this estimate to be reliable. [3]

For a line of best fit y = f(x), the residual for a point (p, q) plotted on the scatter diagram is the vertical distance between (p, f(p)) and (p, q).

- (e) Mark the residual for each point on the scatter diagram in part (b). [1]
- (f) Find the sum of squares of the residuals for the least squares regression line of $\frac{1}{h}$ on $\frac{1}{n}$, giving your answer correct to 5 significant figures. [1]

12 The probability distribution function of a discrete random variable, X, is given as follows:

$$P(X = x) = \begin{cases} \frac{1}{2} P(X = |x| + 1), & \text{if } x = -2, -1 \\ a & , & \text{if } x = 0, 1 \\ b & , & \text{if } x = 2, 3 \\ 0 & , & \text{otherwise} \end{cases}$$

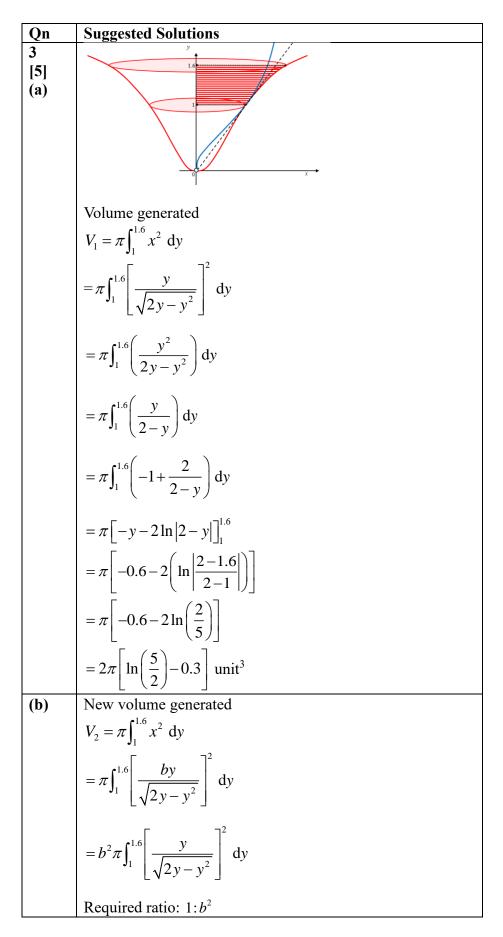
where a and b are positive constants.

(a) Show that
$$b = \frac{1-2a}{3}$$
. [3]

(b) (i) Show that
$$E(X) = \frac{7}{6} - \frac{4a}{3}$$
. [3]

(ii) Find
$$\operatorname{Var}(X)$$
 in terms of a . [3]

(iii) Find the range of values of a for which Var(X) exists. [2]


Let
$$a = \frac{7}{20}$$
.

(c) A random sample of 50 observations of *X* is taken. Find the probability that the sum of these observations differs from 36 by less than 5. [3]

Qn	Suggested Solutions
1 [4]	Translation in the positive <i>y</i> direction by 1 unit
(a)	$y = f(x) \xrightarrow{\text{replace } y \text{ with } y - 1} y = f(x) + 1$
	$\left(0, \frac{1-p}{n}\right) \xrightarrow{\text{replace } y \text{ with } y-1} \left(0, \frac{1}{n}\right)$
	Note:
	[only y-intercept]
	$(1-p,0) \longrightarrow (1-p,1)$
	doesn't cut the <i>x</i> -axis.
(b)	Translation in the positive x direction by p unit
	$y = f(x) \xrightarrow{\text{replace } x \text{ with } x - p} y = f(x - p)$
	$(1-p,0) \xrightarrow{\text{replace } x \text{ with } x-p} (1,0)$
	$(1 p, 0) \longrightarrow (1, 0)$
	Note:
	[only x-intercept]
	$\left(0,\frac{1-p}{p}\right) \xrightarrow{\text{replace } x \text{ with } x-p} \left(p,\frac{1-p}{p}\right) \text{ doesn't cut the } y \text{-axis.}$
	$\left[\begin{array}{c} 0, \\ p \end{array}\right] \xrightarrow{p} \left[\begin{array}{c} p, \\ p \end{array}\right] doesn't cut the y-axis.$
(c)	Step 1 : Translation in the positive x direction by p unit
	Method 1: From Part (b)
	Step 2 : Scale parallel to the x axis by a factor of $\frac{1}{3}$
	$(1-p,0) \xrightarrow{\text{replace } x \text{ with } x-p} (1,0) \xrightarrow{\text{replace } x \text{ with } 3x} (\frac{1}{3},0)$
	Note:
	[only <i>x</i> -intercept]
	$\left(0, \frac{1-p}{p}\right) \longrightarrow \left(\frac{p}{3}, \frac{1-p}{p}\right) \text{ doesn't cut the y-axis.}$
	$\left(\begin{array}{c} 0, \\ \hline p \end{array} \right) \longrightarrow \left(\begin{array}{c} \overline{3}, \\ \hline p \end{array} \right)$ doesn't cut the y-axis.
	Method 2:
	Step 1 : Scale parallel to the x axis by a factor of $\frac{1}{3}$
	Step 2 : Translation in the positive x direction by $\frac{p}{3}$ unit
	$y = f(x) \xrightarrow{\text{replace } x \text{ with} \\ 3x} f(3x) \xrightarrow{x - \frac{p}{3}} f(3x - p)$
	$y = f(x) \xrightarrow{\text{replace } x \text{ with}} f(3x) \xrightarrow{x-\frac{p}{3}} f(3x-p)$ $(1-p,0) \xrightarrow{\text{replace } x \text{ with}} \left(\frac{1-p}{3}, 0\right) \xrightarrow{\text{replace } x \text{ with}} \left(\frac{1}{3}, 0\right)$
L	1

Qn	Suggested Solutions
	Note:
	[only x-intercept]
	$\left(0, \frac{1-p}{p}\right) \longrightarrow \left(\frac{p}{3}, \frac{1-p}{p}\right) \text{ doesn't cut the y-axis.}$
(d)	$y = f(x) \longrightarrow y = f^{-1}(x)$
	Reflection about the line $y = x$
	$ \begin{pmatrix} 0, \frac{1-p}{p} \end{pmatrix} \longrightarrow \begin{pmatrix} \frac{1-p}{p}, 0 \end{pmatrix} $ $ (1-p, 0) \longrightarrow (0, 1-p) $
2	f(x)
[5]	$\frac{f(x)}{g(x)} \ge 1$
(a)	If $g(x) > 0$ for all $x \in \mathbb{R}$, then $f(x) \ge g(x)$ is correct.
	Otherwise the student is wrong $(x) \ge g(x)$ is concert.
(b)	
	$\frac{2x^2 - x - 9}{x^2 - x - 6} \ge 1$
	$\frac{2x^2 - x - 9}{x^2 - x - 6} - 1 \ge 0$
	$\frac{\left(2x^2 - x - 9\right) - \left(x^2 - x - 6\right)}{x^2 - x - 6} \ge 0$
	$x^2 - x - 6$
	$\frac{x^2 - 3}{x^2 - x - 6} \ge 0$
	$\frac{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}{\left(x-3\right)\left(x+2\right)} \ge 0$
	$\frac{\sqrt{x-3}(x+2)}{(x-3)(x+2)} \ge 0$
	Critical values are: $-2, -\sqrt{3}, \sqrt{3}, 3$
	$-2 -\sqrt{3} \sqrt{3} 3$
	-2 $-\sqrt{3}$ $\sqrt{3}$ 3
	$\left\{x \in \mathbb{R}: x < -2 \text{or} -\sqrt{3} \le x \le \sqrt{3} \text{or} x > 3\right\}$
	$\left[\begin{pmatrix} \lambda \subset \mathbb{I} \otimes \cdot \cdot \cdot \lambda > 2 & \text{OI} & \sqrt{3} \leq \lambda \geq \sqrt{3} & \text{OI} & \lambda > 3 \\ \end{pmatrix} \right]$

2024 JC2 H2 MATHEMATICS PRELIMINARY PAPER 1 SUGGESTED SOLUTIONS

Qn	Suggested Solutions
4	Let <i>a</i> be the first term of AP and <i>d</i> be the common
[7]	difference.
(a)	$\frac{a+22d}{a+14d} = \frac{a+14d}{a+14d}$
	a+14d $a+10d$
	$(a+22d)(a+10d) = (a+14d)^{2}$
	$a^2 + 32ad + 220d^2 = a^2 + 28ad + 196d^2$
	$4ad + 24d^2 = 0$
	4d(a+6d) = 0
	d = 0 (reject) or $a = -6d$
	Common ratio of GP = $\frac{a+14d}{a+10d} = \frac{-6d+14d}{-6d+10d} = \frac{8d}{4d} = 2$
(b)	$v_n = S_n - S_{n-1}$
	$3^{n+2} - (-2)^{n+2} - 5 3^{n+1} - (-2)^{n+1} - 5$
	$=\frac{3^{n+2}-(-2)^{n+2}-5}{6}-\frac{3^{n+1}-(-2)^{n+1}-5}{6}$
	$1 \int a^{n+2} (a)^{n+2} = a^{n+1} (a)^{n+1} = 7$
	$=\frac{1}{6}\left[3^{n+2}-\left(-2\right)^{n+2}-5-3^{n+1}+\left(-2\right)^{n+1}+5\right]$
	$=\frac{1}{6}\left[9(3^{n})-3(3^{n})-(-2)^{2}(-2)^{n}+(-2)(-2)^{n}\right]$
	$=\frac{1}{6}\left[6\left(3^{n}\right)-6\left(-2\right)^{n}\right]$
	$=3^n-\left(-2\right)^n$
5	$x = \sec \theta$
[7]	$dx = \cos \theta \tan \theta$
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec\theta\tan\theta$
	When $x = \sqrt{2}$,
	$\frac{1}{\cos\theta} = \sqrt{2} \implies \frac{1}{\cos\theta} = \frac{1}{\sqrt{2}} \implies \theta = \frac{\pi}{4}$
	When $x = 2$, π
	$\frac{1}{\cos\theta} = 2 \implies \frac{1}{\cos\theta} = \frac{1}{2} \implies \theta = \frac{\pi}{3}$
	$\int_{\sqrt{2}}^{2} \frac{1}{\sqrt{x^2 - 1}} \mathrm{d}x$
	$=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{1}{\sqrt{\sec^2\theta-1}}\left(\sec\theta\tan\theta\right)\mathrm{d}\theta$
	$=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{1}{\tan\theta}\left(\sec\theta\tan\theta\right)\mathrm{d}\theta ,$

Qn	Suggested Solutions
	Since $\sqrt{\tan^2 \theta} = \tan \theta = \tan \theta$ where $0 < \theta < \frac{\pi}{2}$
	$=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\sec\theta\mathrm{d}\theta$
	$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sec \theta \mathrm{d}\theta$
	$= \left[\ln \left \sec \theta + \tan \theta \right \right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}$
	$=\ln\left[2+\sqrt{3}\right]-\ln\left[\sqrt{2}+1\right]$
	$=\ln\left[\frac{2+\sqrt{3}}{\sqrt{2}+1}\right]$
6(a)	$f: x \mapsto \ln\left[\left(x+4\right)^2 - 9\right]$
	$\left(x+4\right)^2 - 9 > 0$
	$\left(x+4\right)^2 - 3^2 > 0$
	[x+4-3][x+4+3] > 0
	(x+1)(x+7) > 0
	x < -7 or $x > -1$
(\mathbf{a})	$\begin{array}{c} \text{Minimum } k = -1 \end{array}$
6(b)	$g\left(\frac{3}{2}\right) = f^{-1}(\alpha)$
	$f\left[g\left(\frac{3}{2}\right)\right] = f\left[f^{-1}(\alpha)\right]$
	$f\left[\frac{3-2\left(\frac{3}{2}\right)}{1+2\left(\frac{3}{2}\right)}\right] = f\left[f^{-1}(\alpha)\right]$
	$f(0) = ff^{-1}(\alpha)$
	$f(0) = \alpha$
	$\alpha = \ln\left[\left(0+4\right)^2 - 9\right]$
	$\alpha = \ln 7$

Qn **Suggested Solutions** (c) x $x \stackrel{l}{=} 0$ Method 1: By observation, $x = \frac{a}{2}$, $y = \frac{1}{\sqrt[4]{a^2}} = \sqrt{\frac{2}{a}}$ Coordinates of stationary (minimum) point is $\left(\frac{a}{2}, \sqrt{\frac{2}{a}}\right)$ **Equations of 2 vertical asymptotes:** $x = 0, \quad x = a$ Method 2: $\frac{\mathrm{d}}{\mathrm{d}x} \left[x \left(a - x \right) \right]^{-\frac{1}{4}}$ $=-\frac{1}{4}[x(a-x)]^{-\frac{5}{4}}[a-2x]$ $= -\frac{a-2x}{4\sqrt[4]{\left[x(a-x)\right]^5}}$ For stationary point, $\frac{dy}{dx} = 0 \Rightarrow x = \frac{a}{2}$, $y = \frac{1}{\sqrt[4]{\frac{a^2}{4}}} = \sqrt{\frac{2}{a}}$ Coordinates of stationary (minimum) point is $\left(\frac{a}{2}, \sqrt{\frac{2}{a}}\right)$ **Equations of 2 vertical asymptotes:** $x = 0, \quad x = a$ g: $x \mapsto \frac{3-2x}{1+2x}, \quad \text{for} \quad x \ge \frac{1}{2},$ (d) h: $x \mapsto \frac{1}{\sqrt[4]{x(a-x)}}$, for 0 < x < a, $\mathbf{R}_{h} = \left[\sqrt{\frac{2}{a}}, \infty \right], \ \mathbf{D}_{g} = \left[\frac{1}{2}, \infty \right]$

For gh to exist, $R_h \subseteq D_g$

2024 JC2 H2 MATHEMATICS PRELIMINARY PAPER 1	SUGGESTED SOLUTIONS
---	---------------------

Qn	Suggested Solutions
	$\sqrt{\frac{2}{a}} \ge \frac{1}{2}$
	$\frac{2}{a} \ge \frac{1}{4}$
	$\frac{a}{2} \leq 4$
	$\begin{vmatrix} 2\\ a \le 8 \end{vmatrix}$
	Since $a > 0$, $0 < a \le 8$
(e)	$\left[\left[h(x) \right]^2 = 1 \right]$
	$h(x) = \frac{1}{h(x)}$
	h(x) = h(x)
	Method 1:
	Consider minimum point $\left(\frac{a}{2}, \sqrt{\frac{2}{a}}\right)$ of $y = g(x)$ intersecting
	Maximum of point of $\left(\frac{a}{2}, \sqrt{\frac{a}{2}}\right)$ of $y = \frac{1}{g(x)}$ at exactly one
	$\left(2,\sqrt{2}\right) \text{ or } y \text{ g}(x) \text{ at enably one}$
	point :
	$\boxed{2}$ \boxed{a}
	$\sqrt{\frac{2}{a}} = \sqrt{\frac{a}{2}}$
	$\frac{2}{a} = \frac{a}{2}$
	$\overline{a}^{-}\overline{2}$
	$a^2 = 4$
	$a = \pm 2$
	Since $a > 0$, $a = 2$ Method 2:
	$\left[x(a-x)^{-\frac{1}{4}}\right]^2 = 1$
	$\left[x(a-x)\right]^{\frac{1}{2}}=1$
	x(a-x) = 1
	$x^2 - ax + 1 = 0$
	For repeated roots,
	$a^2 - 4 = 0$
	$a = \pm 2$ Since $a > 0$, $a = 2$
	$\int \sin(\alpha u > 0), u = 2$

Qn	Suggested Solutions
7	$f(-x) = a(-x)^{5} + b(-x)^{3} + c(-x)$
[9] (a)	$= -\left(ax^5 + bx^3 + cx\right)$
	=-f(x)
(b)	$f(x) = ax^5 + bx^3 + cx = 0$
	Since all coefficients are real, by Conjugate Root Theorem, if $p + qi$ is a root, then $p - qi$ is also a root.
	Also from part (a), f(-x)=-f(x)
	We know that f is an odd function and
	If $f(x) = 0$, $f(-x) = 0$
	and hence $-p-qi$ and $-p+qi$ are also non-real roots.
	Since $f(-x) = -f(x)$, So $-p - qi$ and $-p + qi$ are also the
(c)	roots. Method 1:
	$\int_{-3}^{3} f(x) dx = 0$
	$\frac{\text{Method } 2}{\int_{-3}^{3} f(x) dx}$
	$\int_{-3}^{0} f(x) dx + \int_{0}^{3} f(x) dx$
	Since f is an odd function and $\int_0^3 f(x) dx = -5$
	$\int_{-3}^{0} f(x) \mathrm{d}x + \int_{0}^{3} f(x) \mathrm{d}x$
	=5+(-5)
	= 0 Method 3:
	Method 3:

Qn	Suggested Solutions
	$\int_{-3}^{3} \mathbf{f}(x) \mathrm{d}x$
	$= \int_{-3}^{0} f(x) dx + \int_{0}^{3} f(x) dx$
	$= \int_{3}^{0} -f(-x) \mathrm{d}x + (-5)$
	$= \int_0^3 f(-x) \mathrm{d}x + (-5)$
	$= -\int_0^3 f(x) \mathrm{d}x + (-5)$
	=-(-5)+(-5)
	= 0 <u>Method 1</u> :
	y = f(x)
	y = f(x)
	-3 0 3 \cdots
	$3 \rightarrow x$
	$\int_{-3}^{3} f(x) dx = -10$
	$\frac{\text{Method } 2}{\int_{-\infty}^{3} f(dx) dx}$
	$\int_{-3}^{3} f(x) dx$
	$= \int_{-3}^{0} f(-x) \mathrm{d}x + \int_{0}^{3} f(x) \mathrm{d}x$
	$= \int_{3}^{0} -f(x) dx + \int_{0}^{3} f(x) dx$
	$= \int_0^3 f(x) \mathrm{d}x + \int_0^3 f(x) \mathrm{d}x$
	= -5 + (-5)
(1)	= -10 f(x) = x ⁵ + 3x ³ + cx
(d)	
	f'(x) = $5x^4 + 9x^2 + c$ At stat points, $5x^4 + 9x^2 + c = 0$
	$x^{2} = \frac{-9 \pm \sqrt{9^{2} - 4(5)(c)}}{2(5)}$
	Note : $x^2 = \frac{-9 - \sqrt{9^2 - 4(5)(c)}}{2(5)}$ (rejected)
	If they are 2 stat points, $x^2 > 0$

Qn	Suggested Solutions
	$-9 + \sqrt{9^2 - 4(5)(c)} > 0$
	$\sqrt{9^2 - 4(5)(c)} > 9$
	81 - 20(c) > 81
	<i>c</i> < 0
8[12]	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t$
(a)	
	$\frac{dy}{dt} = \frac{1}{t}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{2t^2}$
	At the point with parameter <i>t</i> , equation of tangent is
	$y - \ln t = \frac{1}{2t^2} (x - t^2)$
	$y = \frac{1}{2t^2} (x - t^2) + \ln t$
	$y = \frac{1}{2t^2} x - \frac{1}{2} + \ln t$
(b)	Equation of <i>L</i> , the tangent at <i>P</i> :
	$y = \frac{1}{2p^2}x - \frac{1}{2} + \ln p$
	Given that <i>L</i> passes through $\left(1, \frac{p^2 + 1}{2p^2}\right)$,
	$\frac{p^2 + 1}{2p^2} = \frac{1}{2p^2} \left(1\right) - \frac{1}{2} + \ln p$
	$\ln p = 1$
	<i>p</i> = e
(c)	$\int \ln x \mathrm{d}x$
	$= x \ln x - \int x \left(\frac{1}{x}\right) dx$
	$= x \ln x - \int 1 dx$
	$= x \ln x - x + C$
(d)	Cartesian equation of curve C_2 :
	Since $t > 0$,

Qn	Suggested Solutions
	$t = \sqrt{x}, y = \ln t$
	$\Rightarrow y = \ln\left(\sqrt{x}\right)$
	$=\frac{1}{2}\ln x$
	2
	Area bounded = $\int_{1}^{e^2} (y_1 - y_2) dx$
	$= \int_{1}^{e^{2}} \left(\frac{1}{2e^{2}} x + \frac{1}{2} - \frac{1}{2} \ln x \right) dx$
	$= \left[\frac{1}{4e^2}x^2 + \frac{1}{2}x\right]_{1}^{e^2} - \frac{1}{2}\int_{1}^{e^2} (\ln x) dx$
	$= \left\{ \frac{1}{4e^2} \left(e^2\right)^2 + \frac{1}{2}e^2 - \frac{1}{4e^2} - \frac{1}{2} \right\} - \frac{1}{2} \left[x \ln x - x\right]_{l}^{e^2}$
	$= \left\{ \frac{3}{4}e^2 - \frac{1}{4e^2} - \frac{1}{2} \right\} - \frac{1}{2} \left\{ 2e^2 \ln e - 1^2 \ln 1 - e^2 + 1 \right\}$
	$= \left(\frac{3}{4}e^{2} - \frac{1}{4e^{2}} - \frac{1}{2}\right) - \left(e^{2} - \frac{1}{2}e^{2} + \frac{1}{2}\right)$
	$=\left(\frac{1}{4}e^2 - \frac{1}{4e^2} - 1\right)$ unit ²
9 [14] (a)	$\overrightarrow{OA} = \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix}, \ \overrightarrow{OB} = \begin{pmatrix} -3 \\ 6 \\ 2 \end{pmatrix} \text{ and } \ \overrightarrow{OC} = \begin{pmatrix} -3 \\ -4 \\ 2 \end{pmatrix}$
	$\overrightarrow{AB} = \begin{pmatrix} -3 \\ 6 \\ 2 \end{pmatrix} - \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 10 \\ 1 \end{pmatrix}, \ \overrightarrow{AC} = \begin{pmatrix} -3 \\ -4 \\ 2 \end{pmatrix} - \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 2\\10\\1 \end{pmatrix} \times \begin{pmatrix} 2\\0\\1 \end{pmatrix} = \begin{pmatrix} 10\\0\\-20 \end{pmatrix}$
	Area of triangle ABC
	$=\frac{1}{2}\left \overrightarrow{AB}\times\overrightarrow{AC}\right $
	$=\frac{1}{2} \begin{vmatrix} 10\\0\\-20 \end{vmatrix}$
	$2 \left \left(-20 \right) \right $
	$=\frac{1}{2}\sqrt{100+0+400}$
	$=\frac{1}{2}\sqrt{500}$ or $=5\sqrt{5}$ unit ²

Qn	Suggested Solutions
	$\begin{pmatrix} 1 \\ - 2 \end{pmatrix}$
	$n_{ABC} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$
	Vector equation of π in scalar product form: $r \cdot n = q \cdot n$
	$ \begin{array}{c} \tilde{r} \bullet \tilde{n}_{ABC} = \tilde{a} \bullet \tilde{n}_{ABC} \\ (1) & (-5) & (1) \end{array} $
	$ \begin{array}{c} r \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = -7 \end{array} $
	$\left[\begin{array}{c} \sim \\ -2 \end{array} \right] \left[\begin{array}{c} 1 \end{array} \right] \left[\begin{array}{c} -2 \end{array} \right]$
	Vector equation of π_{ABC} in cartesian form:
(b)	$\begin{aligned} x - 2z &= -7\\ \underline{n}_{ABC} &= k \left(\overrightarrow{AB} \times \overrightarrow{AC} \right) \end{aligned}$
	Plane ABC is parallel to Plane PQR
	$n_{ABC} = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$
	Vector equation of π in scalar product form. ² $r \cdot n_{ABC} = q \cdot n_{ABC}$
	$ \begin{array}{c} r \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = -7 \end{array} $
	$\left(-2\right)$ $\left(1\right)$ $\left(-2\right)$
	Vector equation of π_{ABC} in cartesian form:
()	x - 2z = -7
(c)	$\frac{\text{Method } 1}{(1)}$
	$\pi_{PQR}: r \left[\begin{array}{c} 1 \\ 0 \end{array} \right] = -2 ,$
	(-2)
	(1)
	0
	$r \cdot \frac{\begin{pmatrix} 0 \\ -2 \end{pmatrix}}{\sqrt{5}} = \frac{-2}{\sqrt{5}}$
	Perpendicular height of the prism is
	$\frac{ -7-(-2) }{\sqrt{5}} = \sqrt{5}$ units
	√>
	Volume of prism
	$=(5\sqrt{5})(\sqrt{5})$
	$= 25 \text{ unit}^3$
	Method 2:

Qn	Suggested Solutions
	Let <i>N</i> be a point that lies on the plane π_{PQR} : $r \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = -2$
	$\overrightarrow{NA} = \begin{pmatrix} -5\\ -4\\ 1 \end{pmatrix} - \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} -5\\ -4\\ 0 \end{pmatrix}$
	Perpendicular height of the prism is
	$=\frac{\begin{vmatrix} \overrightarrow{NA} \cdot \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix} \end{vmatrix}}{\sqrt{5}}$
	$=\frac{\begin{vmatrix} \sqrt{5} \\ -4 \\ 0 \end{vmatrix} \begin{pmatrix} -5 \\ -4 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \end{vmatrix}}{\sqrt{5}}$
	$=\sqrt{5}$
	Volume of prism = $(5\sqrt{5})(\sqrt{5})$
	$= 25 \text{ unit}^3$
(c)	Method 3: Volume of prism $= \frac{1}{2} \left[\overrightarrow{AB} \times \overrightarrow{AC} \right] \cdot \sqrt{5} \frac{\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}}{\sqrt{5}}$ $= \frac{1}{2} \begin{pmatrix} 10 \\ 0 \\ -20 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ $= 25 \text{ unit}^{3}$
(d)	$ \frac{\text{Method 1}}{\text{Let }P \text{ be the foot of the perpendicular.}} \\ l_{AP}: \underline{r} = \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}, \lambda \in \mathbb{R} $
	13 Q R B C

Qn	Suggested Solutions
	$\overrightarrow{OP} = \begin{pmatrix} -5 + \lambda \\ -4 \\ 1 - 2\lambda \end{pmatrix}, \text{for some } \lambda \in \mathbb{R}$
	$OP = \begin{bmatrix} -4 \\ 1 & 22 \end{bmatrix}$, for some $\lambda \in \mathbb{R}$
	$\begin{pmatrix} -5+\lambda \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = 2$
	$\begin{pmatrix} -5+\lambda \\ -4 \\ 1-2\lambda \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} = -2$
	$(1-2\lambda)(-2)$ $-5+\lambda-2(1-2\lambda)=-2$
	$-7+5\lambda = -2$
	$\lambda = 1$
	\longrightarrow $\begin{pmatrix} -5+1 \\ -4 \end{pmatrix}$
	$\overrightarrow{OP} = \begin{pmatrix} -5+1\\ -4\\ 1-2 \end{pmatrix} = \begin{pmatrix} -4\\ -4\\ -1 \end{pmatrix}$
	P(-4, -4, -1)
(d)	<u>Method 2</u> :
	Let <i>N</i> be a point that lies on the plane $r \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -2$
	(-2)
	(0)
	$\overrightarrow{ON} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$
	(1)
	\longrightarrow $\begin{pmatrix} -5 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$
	$\overrightarrow{NA} = \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -5 \\ -4 \\ 0 \end{pmatrix}$
	(-5)(1)(1)
	$\overrightarrow{PA} = \frac{\begin{pmatrix} -5\\ -4\\ 0 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix}}{\sqrt{5}} \begin{pmatrix} 1\\ 0\\ -2 \end{pmatrix}}{\sqrt{5}}$
	$TA = \frac{1}{\sqrt{5}} \frac{1}{\sqrt{5}}$
	\rightarrow $\begin{pmatrix} 1 \end{pmatrix}$
	$\overrightarrow{PA} = -\begin{pmatrix} 1\\0\\-2 \end{pmatrix}$
	$\overrightarrow{OA} - \overrightarrow{OP} = - \begin{pmatrix} 1\\0\\-2 \end{pmatrix}$
	$\begin{vmatrix} OA - OI \\ -2 \end{vmatrix}$
	$\overrightarrow{OP} = \begin{pmatrix} -5\\ -4\\ 1 \end{pmatrix} - \begin{pmatrix} -1\\ 0\\ 2 \end{pmatrix} = \begin{pmatrix} -4\\ -4\\ -1 \end{pmatrix}$
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$
	P(-4, -4, -1)

Qn	Suggested Solutions
(e)	$\overrightarrow{OA} = \begin{pmatrix} -5 \\ -4 \\ 1 \end{pmatrix}, \ \overrightarrow{OD} = \begin{pmatrix} 1 \\ 5 \\ -4 \end{pmatrix}$
	$OA = \begin{bmatrix} -4\\1 \end{bmatrix}, OD = \begin{bmatrix} 5\\-4 \end{bmatrix}$
	Let the angle between \overrightarrow{OA} and $\overrightarrow{OD} = \theta$
	$\begin{pmatrix} -5\\ -4\\ 1 \end{pmatrix} \begin{pmatrix} 1\\ 5\\ -4 \end{pmatrix} = \left(\sqrt{42}\right)^2 \cos\theta$
	$\cos\theta = \frac{-5 - 20 - 4}{42} = -\frac{29}{42}$
	Since, $\theta = \cos^{-1}\left(-\frac{29}{42}\right)$ (Minor θ Arc
	$\theta = 133.6678153^{\circ}$
	(Minor) Arc length = $r\theta$
	$=\sqrt{42}\left[\cos^{-1}\left(-\frac{29}{42}\right)\right]$
	= 15.1192 = 15.119 (3 d.p.)
	OR (minor) Anglength
	(minor) Arc length = $\frac{\theta}{360}[2\pi r]$ =15.119 (3 d.p.)
10 [14] (a)	y = 24 - 2x
(b)	z = 24 - 3x
	$\frac{dx}{dt} \alpha(yz)$ or $\frac{dx}{dt} = k_1(yz)$ where k_1 is a positive constant
	$\frac{dx}{dt} = k_1(24 - 2x)(24 - 3x)$
	$= 6k_1(12 - x)(8 - x)$
	= k(x-12)(x-8) dx
	$\therefore \frac{\mathrm{d}x}{\mathrm{d}t} = k(x-12)(x-8), \text{ where } k \text{ is a positive constant}$
(c)	$\frac{\text{Method 1}}{dx}$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(x-12)(x-8)$
	$\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{k(x-12)(x-8)}$

Qn	Suggested Solutions
	$t = \frac{1}{k} \int \frac{1}{(x-8)(x-12)} \mathrm{d}x$
	$t = \frac{1}{k} \left[\int \frac{1}{4(x-12)} dx - \int \frac{1}{4(x-8)} dx \right]$
	$t = \frac{1}{4k} \ln \left \frac{x - 12}{x - 8} \right + C$
	$4kt - 4C = \ln \left \frac{x - 12}{x - 8} \right $
	$\frac{x-12}{x-8} = \pm e^{4kt} e^{-4C}$
	$=Ae^{4kt}$
	where $A = \pm e^{-4C}$ is an arbitrary constant
	When $t = 0$, $x = 0$: 0-12
	$\frac{0-12}{0-8} = Ae^{4k(0)}$
	$A = \frac{3}{2}$
	$\frac{x-12}{x-8} = \frac{3}{2}e^{4kt}$
	x o 2
	$2x - 24 = (3x - 24)e^{4kt}$
	$x = \left[\frac{24(1 - e^{4kt})}{2 - 3e^{4kt}}\right]$
(c)	Method 2:
	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(x-12)(x-8)$
	$\frac{1}{(x-12)(x-8)}\frac{\mathrm{d}x}{\mathrm{d}t} = k$
	$\int \frac{1}{(x-8)(x-12)} \mathrm{d}x = kt + C$
	$\int \frac{1}{(x-10)^2 - 2^2} \mathrm{d}x = kt + C$
	$\frac{1}{2(2)} \ln \left \frac{x - 10 - 2}{x - 10 + 2} \right = kt + C$
	$\ln\left \frac{x-12}{x-8}\right = 4kt + 4C$
	$\frac{x - 12}{x - 8} = \pm e^{4kt} e^{4C}$
	$=Ae^{4kt}$
	where $A = \pm e^{4C}$ is an arbitrary constant
	When $t = 0, x = 0$:

2024 JC2 H2 MATHEMATICS PRELIMINARY PAPER 1	SUGGESTED SOLUTIONS
---	---------------------

Qn	Suggested Solutions
	$\frac{0-12}{0-8} = Ae^{4k(0)}$
	0-8
	$A = \frac{3}{2}$
	$x - 12 3 _{4kt}$
	$\frac{x-12}{x-8} = \frac{3}{2}e^{4kt}$
	$2x - 24 = (3x - 24)e^{4kt}$
	$x = \left[\frac{24(1 - e^{4kt})}{2 - 3e^{4kt}}\right]$
d	$x \rightarrow 8 \text{ as } t \rightarrow \infty$
	Theoretical Mass = 8g
e	When $t = 5$, $x = 4$:
	$\frac{4-12}{4-8} = \frac{3}{2}e^{4k(5)}$
	+-0 2
	$\frac{-8}{-4} = \frac{3}{2} e^{4k(5)}$
	$k = \frac{1}{20} \ln\left(\frac{4}{3}\right)$
f	x
	x = 8
11	By Pythagoras Theorem,
[12]	$l^2 = h^2 + \left(\frac{x}{2}\right)^2$
(a)	$r = n + (\frac{1}{2})$
(b)	A = Area of Square + Area of 4 Triangles
	$A = x^{2} + 4 \left \frac{1}{2} (x) \sqrt{h^{2} + \frac{x^{2}}{4}} \right $
	$\therefore A = x^2 + 2x\sqrt{h^2 + \frac{x^2}{4}} \text{ (shown)}$
	$\therefore A = x^2 + 2x \sqrt{h^2 + \frac{1}{4}} \text{ (snown)}$
(c)	From part (b),
	$A - x^{2} = 2x\sqrt{h^{2} + \frac{x^{2}}{4}}$ $\frac{A - x^{2}}{2x} = \sqrt{h^{2} + \frac{x^{2}}{4}}$
	<u>v</u> 4
	$\frac{A-x^2}{x} = \sqrt{h^2 + \frac{x^2}{x}}$
	2x V 4

Qn	Suggested Solutions
	$\left(\frac{A-x^2}{2x}\right)^2 = h^2 + \frac{x^2}{4}$
	$h^2 = \left(\frac{A - x^2}{2x}\right)^2 - \frac{x^2}{4}$
	Volume of a right pyramid = $\frac{1}{3}$ × base area × height
	$V = \frac{1}{3}x^2h$
	$V^{2} = \frac{1}{9}x^{4} \left[\left(\frac{A - x^{2}}{2x} \right)^{2} - \frac{x^{2}}{4} \right]$
	$=\frac{x^2(A-x^2)^2-x^6}{36}$
	$=\frac{x^2(A^2-2Ax^2+x^4)-x^6}{36}$
	$V^2 = \frac{A^2 x^2 - 2Ax^4}{36}$
	$V^{2} = \frac{Ax^{2}(A - 2x^{2})}{36}$
(d)	$V^2 = \frac{Ax^2\left(A - 2x^2\right)}{36}$
	Method 1:
	$2V\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{A\left(2Ax - 8x^3\right)}{36}$
	For stationary values, $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$
	$2Ax - 8x^3 = 0$
	$2x\left(A-4x^2\right)=0$
	$x \neq 0$, $x \neq -\sqrt{\frac{A}{4}}$, $\therefore x = \frac{1}{2}\sqrt{A}$
	$\frac{\text{Method } 2}{\sqrt{2}}$
	$V = \frac{\sqrt{A}x\sqrt{\left(A - 2x^2\right)}}{6}$
	$\frac{dV}{dx} = \frac{1}{6}\sqrt{A}\sqrt{A - 2x^2} + \frac{1}{6}\sqrt{A}x\left[\frac{1}{2}\left(A - 2x^2\right)^{-\frac{1}{2}}\left(-4x\right)\right]$

Qn	Suggested Solutions
	$\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{\sqrt{A}\left(A - 2x^2\right) - 2\sqrt{A}x^2}{6\sqrt{A - 2x^2}}$
	$=\frac{\sqrt{A}\left(A-4x^2\right)}{6\sqrt{A-2x^2}}$
	$-6\sqrt{A-2x^2}$
	For stationary values, $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$
	$A - 4x^2 = 0$
	$x \neq 0$, $x \neq -\sqrt{\frac{A}{4}}$, $\therefore x = \frac{1}{2}\sqrt{A}$
	Maximum $V^2 = \frac{A^2 \left(\frac{A}{4}\right) - 2A \left(\frac{A^2}{16}\right)}{36}$
	Maximum $V = \sqrt{\frac{A^3}{288}} = \frac{\sqrt{A^3}}{12\sqrt{2}} = \frac{\sqrt{2}\sqrt{A^3}}{24}$
	<u><<additional for<="" maximum,="" not="" parts="" required="" show="" to="" u=""> this question>></additional></u>
	<u>Using 2nd Derivative Test</u> :
	$2V\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{A\left(2Ax - 8x^3\right)}{36}$
	$2V\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} + 2\left(\frac{\mathrm{d}V}{\mathrm{d}x}\right)^2 = \frac{A\left(2A - 24x^2\right)}{36}$
	When $\frac{1}{2}\sqrt{A}$ and $\frac{\mathrm{d}V}{\mathrm{d}x} = 0$,
	$2V\frac{d^2V}{dx^2} = \frac{A\left(2A - 24 \times \frac{A}{4}\right)}{36} = \frac{-4A^2}{36} < 0$
	\therefore V is a maximum when $x = \frac{1}{2}\sqrt{A}$
	Using 1 st Derivative Test:
	$2V\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{A\left(2Ax - 8x^3\right)}{36}$
	$\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{2Ax\left(A - 4x^2\right)}{72V}$
	$\frac{\mathrm{d}V}{\mathrm{d}V} = \frac{2Ax(\sqrt{A}-2x)(\sqrt{A}-2x)}{\sqrt{A}-2x}$
	$\frac{dv}{dx} = \frac{1}{72V}$

Qn	Suggested Solutions
	x $\left(\frac{1}{2}\sqrt{A}\right)^{-}$ $\frac{1}{2}\sqrt{A}$ $\left(\frac{1}{2}\sqrt{A}\right)^{+}$
	$\frac{\mathrm{d}V}{\mathrm{d}x}$ + 0 –
	Shape of $\frac{dV}{dx}$ / $-$ \
(e)	$\frac{1}{3}(x)^2 h = \frac{\sqrt{A^3}}{12\sqrt{2}}$
	$\frac{1}{3}(x)^2 h = \frac{\sqrt{A^3}}{12\sqrt{2}}$ $\frac{h}{x} = \frac{3\sqrt{A^3}}{12\sqrt{2}} \div \left(\frac{\sqrt{A^3}}{2^3}\right)$
	$\frac{h}{x} = \frac{2^3}{4\sqrt{2}}$
	$\frac{h}{x} = \sqrt{2}$
	Let the angle the lateral face make with the horizontal be θ .
	h
	$\frac{1}{\frac{x}{2}}$
	$\tan\theta = \frac{h}{\frac{x}{2}}$
	$\tan \theta = \frac{2h}{x}$
	$\tan \theta = 2\sqrt{2}$ $\theta = \tan^{-1} \left(2\sqrt{2} \right)$
	$\theta = 70.529^{\circ}$ $\theta = 71^{\circ}$ (nearest degree)

Qn	Suggested Solutions

Qn	Suggested Solutions
1(a)	Let $A = \tan^{-1}\left(\frac{1}{x}\right)$ and $B = \tan^{-1}\left(\frac{1}{1+x}\right)$.
	\therefore $\tan A = \frac{1}{x}$ and $\tan B = \frac{1}{1+x}$
	Consider
	$\tan\left[\tan^{-1}\left(\frac{1}{x}\right) - \tan^{-1}\left(\frac{1}{1+x}\right)\right]$
	$= \tan(A-B)$
	$=\frac{\tan A - \tan B}{2}$
	$1 + \tan A \tan B$
	$\frac{1}{1-$
	$=\frac{x + x}{1}$
	$=\frac{\frac{x^{-1}-1+x}{1+x}}{1+\frac{1}{x(1+x)}}$
	1
	$=\frac{1}{x(1+x)+1}$
	$=\frac{1}{x^2+x+1}$
	$\therefore \tan^{-1}\left(\frac{1}{x}\right) - \tan^{-1}\left(\frac{1}{1+x}\right) = \tan^{-1}\left(\frac{1}{x^2 + x + 1}\right) \text{(shown)}$
	Let $f(x) = \tan^{-1} \frac{1}{x} - \tan^{-1} \frac{1}{x+1}, x > 0.$
	For all $x > 0$,
	x+1 > x
	$\frac{1}{x+1} < \frac{1}{x}$
	$\tan^{-1}\frac{1}{x+1} < \tan^{-1}\frac{1}{x}$
	x+1 x
	$\tan^{-1}\frac{1}{x} - \tan^{-1}\frac{1}{x+1} > 0$
	Also,
	$f'(x) = \frac{1}{1 + \frac{1}{x^2}} \left(-\frac{1}{x^2} \right) - \frac{1}{1 + \frac{1}{(1 + x)^2}} \left(-\frac{1}{(1 + x)^2} \right)$

Qn	Suggested Solutions
	$f'(x) = -\frac{1}{1+x^2} + \frac{1}{1+(1+x)^2}$
	$=\frac{(1+x^{2})-[1+(1+x)^{2}]}{(1+x^{2})[1+(1+x)^{2}]}$
	$=\frac{x^{2} - (x^{2} + 2x + 1)}{(1 + x^{2})\left[1 + (1 + x)^{2}\right]}$
	$= -\frac{2x+1}{(1+x^2)\left[1+(1+x)^2\right]} < 0 \text{ since } x > 0$
	Hence
	$\frac{\pi}{4} = \tan^{-1}\frac{1}{1} > \tan^{-1}\frac{1}{1} - \tan^{-1}\frac{1}{1+1} > \tan^{-1}\frac{1}{2} - \tan^{-1}\frac{1}{1+2} > \dots > 0$
	$0 < \tan^{-1}\frac{1}{x} - \tan^{-1}\frac{1}{x+1} < \frac{\pi}{4}$
b	$\frac{1}{x} = \frac{1}{x^{n-1}} \left(\frac{1}{x^{n-1}}\right)$
	$=\sum_{r=1}^{n} \left[\tan^{-1} \left(\frac{1}{r} \right) - \tan^{-1} \left(\frac{1}{1+r} \right) \right]$
	$= \begin{cases} \tan^{-1}(1) & -\tan^{-1}(\frac{1}{2}) \\ +\tan^{-1}(\frac{1}{2}) & -\tan^{-1}(\frac{1}{3}) \\ & & \\ +\tan^{-1}(\frac{1}{n-1}) & -\tan^{-1}(\frac{1}{n}) \\ +\tan^{-1}(\frac{1}{n}) & -\tan^{-1}(\frac{1}{n+1}) \end{cases}$
	$ + \tan^{-1}\left(\frac{1}{n-1}\right) - \tan^{-1}\left(\frac{1}{n}\right) + \tan^{-1}\left(\frac{1}{n}\right) - \tan^{-1}\left(\frac{1}{n+1}\right) $
	$= \tan^{-1}(1) - \tan^{-1}(\frac{1}{n+1})$
	$=\frac{\pi}{4}-\tan^{-1}\left(\frac{1}{n+1}\right)$ (Shown)
	$f(n) = \tan^{-1}\left(\frac{1}{n+1}\right), \ k = \frac{\pi}{4}$
2 [5]	$u_2 = \frac{1+u_1}{1-u_1} = \frac{1+0}{1-0} = 1$
(a)	$u_3 = \frac{1+u_2}{1-u_2} = \frac{1+1}{1-1}$, which is undefined
	• The sequence ends at $u_2 = 1$ as the subsequent terms are
	undefined. ORThere are only two terms and terminate(ends) at the 2nd term.

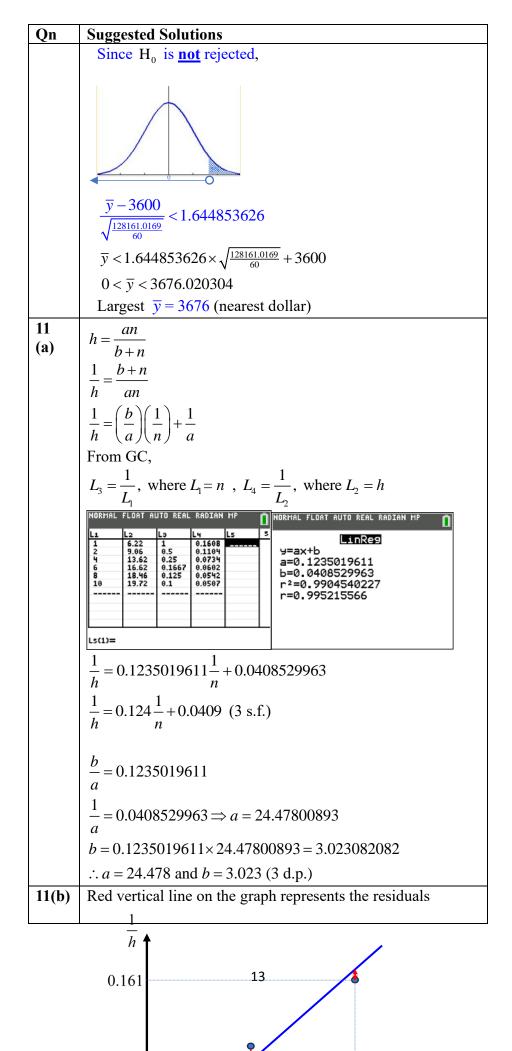
Qn	Suggested Solutions	
	NORMAL FLOAT AUTO REAL RADIAN MP	RMAL FLOAT AUTO REAL RADIAN MP
	Plot1 Plot2 Plot3	ERROR: DIVIDE BY Ø
		Quit Goto
	$\blacksquare \cdot u(n+1) \blacksquare \frac{1+u(n)}{1-u(n)}$	tempted calculation
		contains division by 0.
	■ \v(n+1)=	lculation fails.
	v(1)= v(2)=	
(b)	NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP
(0)	Plot1 Plot2 Plot3	
	TYPE: SEQ(7) SEQ(7+1) SEQ(7+2)	1 2 2 3 3
	$\mathbb{E} \setminus u(n+1) \equiv \frac{1+u(n)}{1-u(n)}$	3 -1/2
	u(1)∎2	4 <u>1</u> 5 2 6 ⁻³
	u(2)= •\v(n+1)=	
	v(1)=	7 12
	v(2)=	n=1
	From GC,	
	2 1 1	2 2
	$u_2 = -3, u_3 = -\frac{1}{2}, u_4 = \frac{1}{3},$	$u_5 = 2, \ u_6 = -3$
	$u_1 = 2$	
	1	
	$u_2 = \frac{1+u_1}{1-u_1} = \frac{1+2}{1-2} = -3$	
	$1 - u_1 - 1 - 2$	
	1+u 1-3 1	
	$u_3 = \frac{1+u_2}{1-u_2} = \frac{1-3}{1-(-3)} = -\frac{1}{2}$	
	$1 - u_2 - 1 - (-3) = 2$	
	1	
	$u_4 = \frac{1+u_3}{1-u_3} = \frac{1-\frac{1}{2}}{1-\left(-\frac{1}{2}\right)} = \frac{1}{3}$	
	$u_4 = \frac{1 + u_3}{1} = \frac{2}{(1 + 1)^2} = \frac{1}{2}$	
	$1 - u_3 = 1 - (-\frac{1}{-1}) - 3$	
	1	
	$1+u_4$ $1+\frac{1}{3}$ 2	
	$u_5 = \frac{1+u_4}{1} = \frac{3}{1} = 2$	
	$u_5 = \frac{1+u_4}{1-u_4} = \frac{\frac{1+\frac{1}{3}}{3}}{1-\frac{1}{3}} = 2$	
	3	
	$1+u_{5}$ $1+2$	
	$u_6 = \frac{1+u_5}{1-u_5} = \frac{1+2}{1-2} = -3$	
	$1 - u_5 1 - 2$	
(c)	From observation, the sequ	ence repeats with a period of 4.
	$\int_{-\infty}^{+\infty} \frac{4n}{n} = (n + n + n) + \dots + n$	(u + u) + (u + u)
	$\sum_{r=1}^{n} u_r - (u_1 + u_2 + u_3 + u_4) +$	$(u_5 + + u_8) + + (u_{4n-1} + u_{4n})$
		4
	$= \left[2 - 3 + \left(-\frac{1}{2}\right) + \frac{1}{3}\right]$	$\times \frac{4n}{2}$
		4
	7	
	$=-\frac{r}{2}n$	
	$=-\frac{7}{6}n$	
3	$2y^3 - y^2 = xe^x$	
[7]	Differentiate implicitly thr	oughout with respect to x:
(a)		

Qn	Suggested Solutions	
	$6y^2 \frac{dy}{dx} - 2y \frac{dy}{dx} = xe^x + e^x$	
	dx = dx $dy = e^x(x+1)$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x \left(x+1\right)}{2 y \left(3 y-1\right)}$	
	When tangent // to y-axis,	
	2y(3y-1) = 0	
	$y = 0, \frac{1}{3}$	
	When $y = 0$, $x = 0$ is equation of the tangent // to y-axis	
	When $y = \frac{1}{3}$	
	$2\left(\frac{1}{3}\right)^3 - \left(\frac{1}{3}\right)^2 = xe^x$	
	$xe^x + \frac{1}{27} = 0$	
	From GC, $Y_1 = xe^x + \frac{1}{27}$, $Y_2 = 0$	
	NORMAL FLOAT AUTO REAL RADIAN MP	
	Intersection X=*4.881235 Y=0	
	x = -0.03849, -4.881235 Therefore, the equations of 3 tangents that are // to y-axis	
	are:	
(b)	$x = 0, x = -0.0385, x = -4.88 \ (3 \text{ s.f.})$	
	Gradient = $\pm \tan\left(\frac{\pi}{2} - \frac{\pi}{6}\right) = \pm\sqrt{3}$ or ± 1.73 (3 s.f.)	
4 [5]	Let the acute angle between the vectors \underline{m} and \underline{n} be θ and the unit vector perpendicular to \underline{m} and \underline{n} be \hat{p} .	
(a)	Applying definition of dot (scalar) product, $\underline{m} \cdot \underline{n} = \underline{m} \underline{n} \cos \theta$	
	$\left(\underline{m}\cdot\underline{n}\right)^{2} = \left \underline{m}\right ^{2}\left \underline{n}\right ^{2}\cos^{2}\theta$	
	Applying definition of cross (vector) product, $\underline{m} \times \underline{n} = \underline{m} \underline{n} \sin \theta \underline{\hat{p}}$	
	$ \underline{m} \times \underline{n} = \underline{m} \underline{n} \sin\theta \underline{\hat{p}} $	
	$ \underline{m} \times \underline{n} = \underline{m} \underline{n} \sin \theta$ (since $ \underline{\hat{p}} = 1$)	
	$\left \underline{m} \times \underline{n}\right ^{2} = \left \underline{m}\right ^{2} \left \underline{n}\right ^{2} \sin^{2} \theta$	

Qn	Suggested Solutions
	$\therefore \left(\underline{\tilde{m}} \bullet \underline{\tilde{n}} \right)^2 + \left \underline{\tilde{m}} \times \underline{\tilde{m}} \right ^2$
	$= \left \underline{m} \right ^2 \left \underline{n} \right ^2 \cos^2 \theta + \left \underline{m} \right ^2 \left \underline{n} \right ^2 \sin^2 \theta$
	$= \left \underline{m} \right ^2 \left \underline{n} \right ^2 \left(\cos^2 \theta + \sin^2 \theta \right) \text{ since } \sin^2 \theta + \cos^2 \theta = 1$
	$=\left \underline{m}\right ^{2}\left \underline{n}\right ^{2}$ (Shown)
(b)	$\mathbf{v} \times \left(\mathbf{p} - \mathbf{q} \right) = 0$
	$\Rightarrow y = 0$ (rej.) or $p - q = 0$ (rej. $\therefore P$ and Q are distinct
	points)
	$\therefore y//(p-q)$
	$ \Rightarrow \underbrace{p}{p} - \underbrace{q}{g} = \underbrace{mv}{w} $
	$\Rightarrow \tilde{p} = \tilde{q} + m\tilde{v}, \text{ where } m \in \mathbb{R} \setminus \{0\}$
	Since p satisfies the equation of l_2 Therefore the lines l_1 and l_2 interpret at the point P
	Therefore the lines l_1 and l_2 intersect at the point <i>P</i> .
5	g(x)
(a)	$=\frac{1}{\left(1+\cos x\right)^2}$
	$= \left(1 + \cos x\right)^{-2}$
	$\approx \left(1+1-\frac{x^2}{2}+\frac{x^4}{24}\right)^{-2}$, since $\cos x \approx 1-\frac{x^2}{2}+\frac{x^4}{24}$
	$= \left(2 - \frac{x^2}{2} + \frac{x^4}{24}\right)^{-2}$
	$=2^{-2}\left(1-\frac{x^2}{4}+\frac{x^4}{48}\right)^{-2}$
	$=\frac{1}{4}\left[1+\frac{(-2)}{1}\left(-\frac{x^{2}}{4}+\frac{x^{4}}{48}\right)+\frac{(-2)(-3)}{2!}\left(-\frac{x^{2}}{4}+\frac{x^{4}}{48}\right)^{2}+\dots\right]$
	$=\frac{1}{4}\left[1+\frac{1}{2}x^{2}-\frac{1}{24}x^{4}+\frac{3}{16}x^{4}+\ldots\right]$
	$\approx \frac{1}{4} + \frac{1}{8}x^2 + \frac{7}{192}x^4$
(b)	$\approx \frac{1}{4} + \frac{1}{8}x^{2} + \frac{7}{192}x^{4}$ $Y_{1} = \frac{1}{\left(1 + \cos x\right)^{2}}$
	$Y_2 = \frac{1}{4} + \frac{1}{8}x^2 + \frac{7}{192}x^4$
	$y = Y_1 - Y_2 $

Qn	Suggested Solutions
	NORMAL FLOAT AUTO REAL RADIAN MP
	Y4=abs(Y1-Y2)
	Intersection
	X=1.7473563 Y=0.5
	$ Y_1 - Y_2 \le 0.5$
	$\begin{bmatrix} I_1 & I_2 \end{bmatrix} \le 0.5$ From GC,
	$\{x \in \mathbb{R}: 0 \le x \le 1.75\} (3 \text{ s.f.})$
6	$ u ^2$
[10]	u = $ x+iy ^2$
(a)	
	$=\left[\sqrt{x^2+y^2}\right]^2$
	$= x^2 + y^2$
	=(x+iy)(x-iy)
(b)	$\frac{\text{Method } 1}{1}$
	$ z+w ^{2} = z-w ^{2}$
	$(z+w)(z+w)^* = (z-w)(z-w)^*$
	$(z+w)(z^*+w^*) = (z-w)(z^*-w^*)$ zz^*+zw^*+wz^*+ww^* = zz^*-zw^*-wz^*+ww^*
	$2(zw^{*}+wz^{*})=0$
	$zw^* + wz^* = 0$
	Method 2:
	Let $z = x + iy$ and $w = a + ib$
	where $x \in \mathbb{R}, x \neq a \neq 0$, $y \in \mathbb{R}, y \neq b \neq 0$
	$ z+w ^{2} = z-w ^{2}$
	$\left (x+\mathrm{i}y) + (a+\mathrm{i}b) \right = \left (x+\mathrm{i}y) - (a+\mathrm{i}b) \right $
	(x+a)+i(y+b) = (x-a)+i(y-b)
	$(x+a)^{2} + (y+b)^{2} = (x-a)^{2} + (y-b)^{2}$
	$x^{2} + 2ax + a^{2} + y^{2} + 2yb + b^{2} = x^{2} - 2ax + a^{2} + y^{2} - 2yb + b^{2}$
	4ax + 4yb = 0
	ax + yb = 0
	$zw^* + wz^*$
	=(x+iy)(a-ib)+(a+ib)(x-iy)

Qn	Suggested Solutions
	=(ax+by)+i(ay-bx)+(ax+by)+i(-ay+bx)
	=2ax+2by
	Since $ax + yb = 0$,
	$\therefore zw^* + wz^* = 2ax + 2by = 0 \text{ (shown)}$
(c)	$\frac{\text{Method 1}}{zw^* + wz^* = 0}$
	$zw^{*} + wz^{*} = 0$ $zw^{*} + (w^{*}z)^{*} = 0$
	$(w^*z) + (w^*z)^* = 0$
	$2\operatorname{Re}(w^*z) = 0$
	w^*z is purely imaginary.
	Method 2:
	* ZW
	=(x+iy)(a-ib)
	=(ax+by)+i(ay-bx)
	From part (b),
	Since $ax + yb = 0$
	<i>zw</i> [*]
	=0+i(ay-bx)
	$\therefore \operatorname{Re}(zw^*) = 0$
(d)	$w = -1 + i\sqrt{3} \implies \arg(w) = \frac{2\pi}{3}$
	$\arg(zw^*)$
	$= \arg(z) + \arg(w^*)$
	$= \arg(z) - \arg(w)$
	$=\theta - \frac{2\pi}{2}$
	3
	Since <i>zw</i> [*] is purely imaginary,
	Method 1:
	$\theta - \frac{2\pi}{3} = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$
	$\theta = \frac{7\pi}{6} + k\pi$
	$\theta = \frac{\pi}{6}$ or $\theta = -\frac{5\pi}{6}$ since $-\pi < \theta \le \pi$.
	Method 2:
	$\overline{\left(\theta - \frac{2\pi}{3}\right)} = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}$
	$\theta = -\frac{\pi}{2} + \frac{2\pi}{3}, -\frac{3\pi}{2} + \frac{2\pi}{3}$
	$\theta = \frac{\pi}{6}, -\frac{5\pi}{6} \text{since} -\pi < \theta \le \pi.$


Qn	Suggested Solutions
7	$M \sim B(n, p)$
(a)	$P(2 \le M \le 3) = P(M = 2) + P(M = 3)$
	$= \binom{n}{2} p^{2} (1-p)^{n-2} + \binom{n}{3} p^{3} (1-p)^{n-3}$
	$=\frac{n(n-1)}{2}p^{2}(1-p)^{n-2}+\frac{n(n-1)(n-2)}{6}p^{3}(1-p)^{n-3}$
7 (b)	$M \sim B(10, p)$ $P(2 \le M \le 3)$
	$P(2 \le M \le 3)$ = $P(M = 2) + P(M = 3)$
	$= {\binom{10}{2}} p^{2} (1-p)^{8} + {\binom{10}{3}} p^{3} (1-p)^{7}$
	$= 45p^{2}(1-p)^{8} + 120p^{3}(1-p)^{7}$ = k
	Let X be the number of days in which $2 \le M \le 3$ out of 5 working days $X \sim B(5,k)$ P(X = 3) = 0.25
	$\binom{5}{3}k^3\left(1-k\right)^2 = 0.25$
	Let $Y_1 = {\binom{5}{3}} k^3 (1-k)^2$ and $Y_2 = 0.25$
	NORMAL FLOAT AUTO REAL RADIAN MP CALCINTERSECT Y2=0.25 Intersection X=0.3540735 Y=0.25
	From GC, p = 0.1559537 or $0.3540735p = 0.156$ or 0.354 (3 s f)
	$p = 0.156 \text{ or } 0.354 \text{ (3 s.f.)}$ $\begin{array}{c} \text{MORHAL FLOAT AUTO REAL RADIAN MP} \\ \text{Plot1 Plot2 Plot3} \\ \text{Ny1=binompdf(5.45X^2(1-X)^8.)} \\ \text{Ny2Bbinompdf(5.binomcdf(1))} \\ \text{Ny4=} \\ \text{Ny5=} \\ \text{Ny6=} \\ \text{Ny7=} \\ \text{Ny8=} \end{array}$
	GC Keystrokes:

Qn	Suggested Solutions
	• $P(2 \le M \le 3)$
	$= \mathbf{P}(M \le 3) - \mathbf{P}(M \le 1)$
	= binomcdf(10, X, 3) - binomcdf(10, X, 1)
	• $P(2 \le M \le 3)$
	= P(M = 2) + P(M = 3)
	= binompdf(10, $X, 2$) + binompdf(10, $X, 3$)
	• $P(X=3)$
	$= (5, \operatorname{binomcdf}(10, x, 3) - \operatorname{binomcdf}(10, x, 1), 3)$
8 (a)	Each door can take any of the 4 colours. Applying multiplication principle on each of the 5 doors, total number of ways without restrictions $= 4^5$
	= 1024
8(b)	<u>Step 1</u> :
	Number of ways to choose a colour for Door A is ${}^{4}C_{1}$.
	Step 2: Door B must be of different colour from Door A, so there are 3 ways to paint Door B.
	Step 3: Similarly, Door C must be of different colour from Door B, so there are also 3 ways to paint Door C.
	Step 4: Similarly, Door D must be of different colour from Door C, so there are also 3 ways to paint Door C.
	:. Total number of ways to paint the doors such that there are no consecutive doors which are of the same colour. = ${}^{4}C_{1} \times 3^{4}$
	= 324
8	<u>Step 1</u> :
(c)	5 doors choose 2 doors to be of the same colour ${}^{5}C_{2}$ ways
	Step 2: For the 2 doors which are of same colour, there are 4 colours to choose from.
	Step 3: The other 3 remaining doors must be of different colours and there are 3! ways
	Total number of ways to paint the doors if all 4 colours are to be used

Qn	Suggested Solutions
	$= {}^{5}C_{2} \times 4 \times 3!$
	= 240
9	$S \sim N(\mu, \sigma^2)$
(a)	Since $P(S < 80.5) = P(S > 84.5)$,
	By symmetry, $\mu = \frac{80.5 + 84.5}{2} = 82.5$.
	$\frac{\text{Method 1}}{S \sim N(82.5, \sigma^2)}$
	Let $Y_1 = P(S > 85)$ and $Y_2 = 0.0115$ NORMAL FLOAT AUTO REAL RADIAN MP CALC INTERSECT Y5=1.15/100
	Intersection X=1.0996583 Y=0.0115
	From GC, $\sigma = 1.0996583 = 1.10$ (3 s.f.) (Shown)
	<u>Method 2</u> : Using Standard Normal Distribution P(S > 85) = 0.0115
	$P\left(Z > \frac{85 - \mu}{\sigma}\right) = 0.1155$
	$\frac{85-82.5}{\sigma} = 2.27343$
	$\sigma = 1.099657 = 1.10 (3 \text{ s.f.}) (\text{Shown})$
9 (b)	$C \sim N(83, 1.5^2)$
(b)	Let $W = C - S$.
	$W \sim N(83 - 82.5, 1.1099657^2 + 1.5^2)$
	i.e. $W \sim N(0.5, 3.45925)$
	or $W \sim N(0.5, 3.46)$ [if use $\sigma = 1.10$]
	$P(0 < C - S \le 2)$
	$= P(0 \le W \le 2)$
	= 0.39599 or 0.39595 [if use σ =1.10] = 0.396 (3 s.f.)

Qn	Suggested Solutions
9	$P(C-S > 1.5 0 < C-S \le 2)$
(c)	$= \frac{P(1.5 < C - S \le 2)}{P(0 < C - S \le 2)}$
	$= \frac{0.0854258}{0.39599} \text{or} = \frac{0.0854208}{0.39595} \text{[if use } \sigma = 1.10\text{]}$
	$= 0.215727$ or $= 0.215734$ [if use $\sigma = 1.10$]
	= 0.216 (3 s.f.)
10 (a)	 Not all graduates will be employed immediately after graduation, making it harder to gather salary data and select a truly random sample. It may be difficult to track where fresh graduates are employed, as their contact details may have changed since leaving university. Some graduates may be unwilling to respond to the survey, particularly if they are uncomfortable sharing salary information. Graduates in different job sectors or industries (e.g., private vs. public) may have different levels of transparency regarding salary data. For example, starting salaries in the private sector may be confidential, further complicating data collection.
10 (b)	$\sum (x-3600) = 1000$ $\sum x - \sum 3600 = 1000$ $\sum x = 1000 + \sum 3600$ $\sum x = 1000 + 80(3600)$ An unbiased estimate of population mean is $= \overline{x} = \frac{\sum x}{80}$ $\overline{x} = \frac{1000}{80} + 3600$ = 3612.5 $= \frac{7225}{2}$ An unbiased estimate of population variance is $= s^2$ $s^2 = \frac{1}{79} \left[205000 - \frac{1000^2}{80} \right]$ $= \frac{192500}{79}$ $= 2436 \frac{56}{79}$ = 2436.708861

Qn	Suggested Solutions
10	Let μ and σ^2 be the population mean and variance of
(c)	starting monthly salaries of fresh graduates with B.Sc.
	Test $H_0: \mu = 3600$
	Against $H_1: \mu > 3600$
	Perform a 1-tailed test at 5% level of significance.
	Under H_0 , since $n = 80$ is large, by Central Limit
	Theorem , $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ approximately
	Test Statistic: $Z = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim N(0,1)$ approximately
	\sqrt{n}
	At 5% level of significance, <i>p</i> -value
	$= 0.01175874 \approx 0.0118$ (3 s.f)
	Since <i>p</i> -value = $0.0118 < 0.05$, we reject H ₀ and conclude
	that there is <u>sufficient evidence</u> at <u>5%</u> level of significance
	that the population mean monthly salary is higher than
	<u>\$3600</u> . Therefore <u>First-Pay's claim is justifiable</u> .
10	Since the sample size of 80 is large, by Central Limit
(d)	Theorem, <u>sample mean monthly salary</u> of fresh graduates
	with B.Sc, X follows a normal distribution <u>approximately</u> .
10	Thus, no assumption on the population, X is needed.
10 (e)	"5% level of significance" means that there is a 5% probability that we wrongly conclude that population mean monthly
(0)	salaries of fresh graduates with B.Sc. is higher than \$3600
	when it is in fact \$3600.
10	Test $H_0: \mu = 3600$
(f)	Against H_1 : $\mu > 3600$
	Perform a 1-tailed test at 5% level of significance.
	$s^2 = \frac{60}{59} \times 355^2 = 128161.0169$
	Under H_0 , since $n = 60$ is large, by Central Limit
	Theorem , $\overline{Y} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ approximately.
	Test Statistic: $Z = \frac{\overline{Y} - \mu}{\frac{S}{\sqrt{60}}} \sim N(0,1)$ approximately
	•
	At 5% level of significance, reject H ₀ when critical region is $z \ge 1.644853626$
	$1 \text{ Grown III}_{0} \text{ when children region 18 } \zeta \geq 1.044033020$

Qn	Suggested Solutions
11	$h = \frac{an}{a}$
(c)	$h = \frac{an}{b+n}$ or $\frac{1}{h} = \left(\frac{b}{a}\right)\left(\frac{1}{n}\right) + \frac{1}{a}$ $h = a - \frac{bn}{b+n}$
	$h = a - \frac{bn}{a} \qquad h (a) (n) a$
	As $n \to \infty$, $h \to a$ or $\frac{1}{h} \to \frac{1}{a}$
	 The theoretical maximum height of the plant specimen. The maximum height of the plant specimen in the long run.
11	Since $h \ge 18$,
(d)	1_1
	$\frac{1}{h} \le \frac{1}{18}$
	$\frac{1}{h} = 0.1235019611 \left(\frac{1}{n}\right) + 0.0408529963$
	$0.1235019611\left(\frac{1}{n}\right) + 0.0408529963 \le \frac{1}{18}$
	$n \ge 8.400031487$
	Minimum number of months is 9.
	The estimate is reliable since
	• $h = 18$ cm is within the data range $[6.22, 19.72]$ and
	• scatter diagram in part (b) shows that there is a strong
	positive linear relationship between $\frac{1}{h}$ and $\frac{1}{n}$.
	• $r = 0.995215566 = 0.995$ (3 s.f.) is close to 1 indicating
	1 1
	a strong positive linear relationship between $\frac{1}{h}$ and $\frac{1}{n}$.
11(f)	$L_4 = \frac{1}{h}$
	From least squares regression line:
	$L_5 = \frac{1}{h} = 0.1235019611 \left(\frac{1}{n}\right) + 0.0408529963$, or
	$L_5 = 0.12350L_3 + 0.040852$ (5 s.f.)
	From GC,
	sum of squares of residual
	$= \operatorname{Sum} \left(L_4 - L_5 \right)^2$
	$= 8.8416 \times 10^{-5} (5 \text{ s.f.})$
	= 0.000088416 (5 s.f.)
	Using GC to calculate sum of squares of residuals
	Method 1:

Qn	Suggested Solutions
	NORMAL FLOAT AUTO REAL RADIAN MP
	L1 L2 L3 L4 L5 5 1 6.22 1 0.1608 0.1504 1 6.22 1 0.1608 0.1504 2 9.06 0.5 0.1104 2 9.05 0.5 0.1104 0.1026 0.1024 0.1026 0.1024 0.0266 0.1024 0.0266 0.01264 0.0126
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	8 18.46 0.125 0.0542 8 18.46 0.125 0.0563 10 19.72 0.1 0.0507 10 19.72 0.1 0.0532
	Ls=0.1235(L3)+0.040852 Ls(D=0.164352
	NORMAL FLOAT AUTO REAL RADIAN MP
	NAMES OPS MATH
	2:L2 2:max(3:L3 3:mean(
	4:L4 4:median(
	6:L6 6:Prod(
	7:RESID 7:stdDev(8:variance(
	NORMAL FLOAT AUTO REAL RADIAN MP
	sum((L4-L5) ²)
	Mathad 2.
	Method 2:
	NEMES OPS MATH
	1:L1 2 9.06 0.5 0.1104
	2:L2 3:L3 4 13.62 6 16.62 8 18.4 6 16.62 8 18.4 6 1.652 8 18.4 9 8 18.4 9 125 8 18.5 10.0734 10.002
	4:L4 5:L5
	<u>6:L6</u>
	7:RESID
	Ls= LRESID
	NORMAL FLOAT AUTO REAL RADIAN MP
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4 13.62 0.25 0.0734 0.0017 2:2-Var Stats
	6 16.62 0.1667 0.06692 -0.001 2.2 Val Statistics 8 18.46 0.125 0.0512 -0.002 3:Med-Med 10 19.72 0.1 0.0597 -0.002 4:LinReg(ax+b)
	5:QuadRe9
	6:CubicRe9 7:QuartRe9
	8:LinRe9(a+bx)
	LS(1)=-0.00358325318198 94LnRe9
	1-Var Stats 1-Var Stats
	List:Ls x=-1.3333333333-15 FreqList: Σx=-8ε-15
	Calculate Σx ² =8.841602243ε ⁻⁵ Sx=0.0042051402
	σx=0.0038387503 n=6
	minX=-0.0035832532
	↓Q1=-0.0024932532
12	Probability Distribution of X
(a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	P(X = X) - - a a b b

Qn	Suggested Solutions
	$\sum_{\substack{\text{all } x \\ h = h}} P(X = x) = 1$
	$\frac{b}{2} + \frac{b}{2} + a + a + b + b = 1$ 2a + 3b = 1
	$b = \frac{1-2a}{3}$ $E(X) = \sum_{\text{all } x} x P(X = x)$
12 (b) (i)	
(1)	$E(X) = -\frac{2b}{2} - \frac{b}{2} + 0 + a + 2b + 3b$
	$E(X) = a + \frac{7b}{2}$ Since $b = \frac{1-2a}{2}$
	Since $b = \frac{1-2a}{3}$, E(X)
	$=a+\frac{7\left(\frac{1-2a}{3}\right)}{2}$
	$=\frac{7}{6} - \frac{4a}{3}$ $E(X^{2}) = \sum_{\text{all } x} x^{2} P(X = x)$
12 (b)	
(ii)	
	$=\frac{4b}{2} + \frac{b}{2} + 0 + a + 4b + 9b$ 31b
	$= a + \frac{31b}{2}$ Since $b = \frac{1-2a}{3}$,
	$\mathbf{E}(\mathbf{X}^2)$
	$= a + \frac{31\left(\frac{1-2a}{3}\right)}{2}$ $= 31 - 28a$
	$=\frac{31}{6}-\frac{28a}{3}$

Qn	Suggested Solutions
	$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left[\operatorname{E}(X)\right]^{2}$
	$=\frac{31}{6} - \frac{28a}{3} - \left(\frac{7}{6} - \frac{4a}{3}\right)^2$
	$=\frac{31}{6} - \frac{28a}{3} - \left(\frac{49}{36} - \frac{56a}{18} + \frac{16a^2}{9}\right)$
	$=\frac{137}{36} - \frac{56a}{9} - \frac{16a^2}{9}$
12 (b) (iiii)	For X to be defined, a, b > 0 as stated in the question.
(iii)	From part (a), $b = \frac{1-2a}{3}$
	$\therefore 1 - 2a > 0$ $a \le \frac{1}{2}$
	When X is defined, $Var(X)$ is defined when $0 < a < \frac{1}{2}$
	SR:
	For $Var(X)$ to exist, $Var(X) \ge 0$
	$\frac{137}{36} - \frac{56a}{9} - \frac{16a^2}{9} \ge 0$
	$64a^2 + 224a - 137 \le 0$
	From GC, $-4.03 \le a \le 0.531$
	$\Rightarrow 0 < a \le 0.531 (\because a > 0) (1)$
	Also
	$b = \frac{1-2a}{3} > 0$
	$b = \frac{1 - 2a}{3} > 0$ $a < \frac{1}{2} - \dots (2)$
	Using intersection of (1) and (2), $0 < a < \frac{1}{2}$
12 (c)	For $a = \frac{7}{20}$,
	$E(X) = \frac{7}{6} - \frac{4\left(\frac{7}{20}\right)}{3} = \frac{7}{10}$
	$\operatorname{Var}(X) = \frac{137}{36} - \frac{56\left(\frac{7}{20}\right)}{9} - \frac{16\left(\frac{7}{20}\right)^2}{9} = \frac{141}{100}$

Qn	Suggested Solutions
	Since $n = 50$ is large, by Central Limit Theorem,
	Let $T = X_1 + X_2 + + X_{50} \sim N\left(50\left(\frac{7}{10}\right), 50\left(\frac{141}{100}\right)\right)$
	approximately.
	:. $T \sim N(35,70.5)$ approximately. P(T-36 < 5) = P(-5 < T - 36 < 5) = P(31 < T < 41)
	P(T-36 <5)
	= P(-5 < T - 36 < 5)
	= P(31 < T < 41)
	= 0.445667
	= 0.446 (3 s.f.)

Visit gta.sg for more!